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Abstract

This paper compares a range of methods
for classifying words based on linguis-
tic diagnostics, focusing on the task of
learning countabilities for English nouns.
We propose two basic approaches to
feature representation: distribution-based
representation, which simply looks at
the distribution of features in the cor-
pus data, and agreement-based represen-
tation which analyses the level of token-
wise agreement between multiple pre-
processor systems. We additionally com-
pare a single multiclass classifier archi-
tecture with a suite of binary classifiers,
and combine analyses from multiple pre-
processors. Finally, we present and evalu-
ate a feature selection method.

1 Introduction

Lexical acquisition can be described as the process
of populating a grammar skeleton with lexical items,
through a process of mapping word lemmata onto
lexical types described in the grammar. Depending
on the linguistic precision of the base grammar, lex-
ical acquisition can range in complexity from sim-
ple part-of-speech tagging (shallow lexical acquisi-
tion) to the acquisition of selectionally-constrained
subcategorisation frame clusters or constructional
compatibilities (deep lexical acquisition). Our par-
ticular interest is in the latter task of deep lexical
acquisition with respect to English nouns.

We are interested in developing learning tech-
niques for deep lexical acquisition which take a fixed
set of linguistic diagnostics, and classify words ac-
cording to corpus data. We propose a range of gen-
eral techniques for this task, as exemplified over the
task of English countability acquisition. Countabil-
ity is the syntactic property that determines whether
a noun can take singular and plural forms, and af-
fects the range of permissible modifiers. Many
nouns have both countable and uncountable lemmas,

with differences in meaning:I submitted two papers
“documents” (countable) vs.Please use white paper
“substance to be written on” (uncountable).

This research complements that described in
Baldwin and Bond (2003), where we present the lin-
guistic foundations and features drawn upon in the
countability classification task, and motivate the
claim that countability preferences can be learned
from corpus evidence. In this paper, we focus on
the methods used to tackle the task of countability
classification based on this fixed feature set.

The remainder of this paper is structured as fol-
lows. Section 2 outlines the countability classes,
resources and pre-processors. Section 3 presents
two methods of representing the feature space. Sec-
tion 4 details the different classifier designs and the
dataset, which are then evaluated in Section 5. Fi-
nally, we conclude the paper with a discussion in
Section 6.

2 Preliminaries

In this section, we describe the countability classes,
the resources used in this research, and the feature
extraction method. These are described in greater
detail in Baldwin and Bond (2003).

2.1 Countability classes

Nouns are classified as belonging to one or more of
four possible classes: countable, uncountable, plural
only and bipartite.Countable nouns can be modi-
fied by denumerators, prototypically numbers, and
have a morphologically marked plural form:one
dog, two dogs. Uncountablenouns cannot be mod-
ified by denumerators, but can be modified by un-
specific quantifiers such asmuch; they do not show
any number distinction (prototypically being singu-
lar): *one equipment, some equipment, *two equip-
ments. Plural only nouns only have a plural form,
such asgoods, and cannot be either denumerated or
modified bymuch; many plural only nouns, such
asclothes, use the plural form even as modifiers:a
clothes horse. Bipartite nouns are plural when they
head a noun phrase (trousers), but generally singu-
lar when used as a modifier (trouser leg); they can
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be denumerated with the classifierpair: a pair of
scissors.

2.2 Gold standard data

Information about noun countability was obtained
from two sources: COMLEX 3.0 (Grishman et
al., 1998) and the common noun part ofALT-
J/E’s Japanese-to-English semantic transfer dictio-
nary (Ikehara et al., 1991). Of the approximately
22,000 noun entries inCOMLEX , 13,622 are marked
as countable, 710 asuncountable and the remainder
are unmarked for countability.ALT-J/E has 56,245
English noun types with distinct countability.

2.3 Feature space

Features used in this research are divided up into
feature clusters, each of which is conditioned on
the occurrence of atarget noun in a given construc-
tion. Feature clusters are either one-dimensional
(describing a single multivariate feature) or two-
dimensional (describing the interaction between two
multivariate features), with each dimension describ-
ing a lexical or syntactic property of the construc-
tion in question. An example of a one-dimensional
feature cluster is head noun number, i.e. the num-
ber (singular or plural) of the target noun when it oc-
curs as the head of an NP; an example of a two-
dimensional feature cluster in subject–verb agree-
ment, i.e. the number (singular or plural) of the tar-
get noun when it occurs as head of a subject NP
vs. number agreement on the verb (singular or plu-
ral). Below, we provide a basic description of the
10 feature clusters used in this research and their di-
mensionality ([x]=1-dimensional feature cluster with
x unit features,[x×y]=2-dimensional feature cluster
with x × y unit features). These represent a total of
206 unit features.

Head noun number:[] the number of the target
noun when it heads an NP

Modifier noun number: [] the number of the target
noun when a modifier in an NP

Subject–verb agreement:[×] the number of the
target noun in a subject position vs. number
agreement on the governing verb

Coordinate noun number:[×] the number of the
target noun vs. the number of the head nouns of
conjuncts

N of N constructions:[×] the type of the N (e.g.
COLLECTIVE, TEMPORAL) vs. the number of the
target noun (N) in an N of N construction

Occurrence in PPs:[×] the preposition type vs.

the presence or absence of a determiner when
the target noun occurs insingular form in a PP

Pronoun co-occurrence:[×] what personal, pos-
sessive and reflexive pronouns (e.g.he, their,
itself) occur in the same sentence as singular
and plural instances of the target noun

Singular determiners:[] what singular-selecting
determiners (e.g.a, much) occur in NPs headed
by the target noun insingular form

Plural determiners:[] what plural-selecting de-
terminers (e.g.many, various) occur in NPs
headed by the target noun inplural form

Non-bounded determiners:[×] what non-
bounded determiners (e.g.more, sufficient)
occur in NPs headed by the target noun, and
what is the number of the target noun for each

2.4 Feature extraction

The values for the features described above were ex-
tracted from the written component of the British
National Corpus (BNC, Burnard (2000)) using three
different pre-processors: (a) a POS tagger, (b) a full-
text chunker and (c) a dependency parser. These are
used independently to test the efficacy of the differ-
ent systems at capturing features used in the clas-
sification process, and in tandem to consolidate the
strengths of the individual methods.

With the POS extraction method, we first tagged
the BNC using an fnTBL-based tagger (Ngai and
Florian, 2001) trained over the Brown and WSJ cor-
pora and based on the Penn POS tagset. We then
lemmatised this data using a Penn tagset-customised
version of morph (Minnen et al., 2001). Finally, we
implemented a range of high-precision, low-recall
POS-based templates to extract out the features from
the processed data.

For the chunker, we ran fnTBL over the lem-
matised tagged data, training over CoNLL 2000-
style (Tjong Kim Sang and Buchholz, 2000) chunk-
converted versions of the full Brown and WSJ cor-
pora. For the NP-internal features (e.g. determin-
ers, head number), we used the noun chunks directly,
or applied POS-based templates locally within noun
chunks. For inter-chunk features (e.g. subject–verb
agreement), we looked at only adjacent chunk pairs
so as to maintain a high level of precision.

We read dependency tuples directly off the output
of RASP (Briscoe and Carroll, 2002b) in grammati-
cal relation mode.1 RASP has the advantage that re-
call is high, although precision is potentially lower

1We used the first parse in the experiments reported here.
An alternative method would be to use weighted dependency
tuples, as described in Briscoe and Carroll (2002a).



than chunking or tagging as the parser is forced into
resolving phrase attachment ambiguities and com-
mitting to a single phrase structure analysis.

After generating the different feature vectors for
each noun based on the above configurations, we fil-
tered out all nouns which did not occur at least 10
times in NP head position in the output of all three
systems. This resulted in a total of 20,530 nouns,
of which 9,031 are contained in the combinedCOM-
LEX andALT-J/E lexicons. The evaluation is based
on these 9,031 nouns.

3 Feature representation

We test two basic feature representations in this re-
search: distribution-based, which simply looks at
the relative occurrence of different features in the
corpus data, and agreement-based, which analyses
the level of token-wise agreement between multiple
systems.

3.1 Distribution-based feature representation

In the distribution-based feature representation, we
take each target noun in turn and compare its amal-
gamated value for each unit feature with (a) the val-
ues for other target nouns, and (b) the value of other
unit features within that same feature cluster. That
is, we focus on the relative prominence of features
globally within the corpus and locally within each
feature cluster.

In the case of a one-dimensional feature cluster
(e.g. singular determiners), each unit featuref s for
target nounw is translated into 3 separate feature
values:

corpfreq(f s, w) =
freq(f s|w)

freq(∗) (1)

wordfreq(f s, w) =
freq(f s|w)

freq(w)
(2)

featfreq(f s, w) =
freq(f s|w)∑

ifreq(f i|w)
〉 (3)

wherefreq(∗) is the frequency of all words in the cor-
pus. That is, for each unit feature we capture the rel-
ative corpus frequency, frequency relative to the tar-
get word frequency, and frequency relative to other
features in the same feature cluster. Thus, for ann-
valued one-dimensional feature cluster, we generate
3n independent feature values.

In the case of a two-dimensional feature ma-
trix (e.g. subject-position noun number vs. verb
number agreement), each unit featuref s,t for tar-
get noun w is translated intocorpfreq(f s,t,w),
wordfreq(f s,t,w) and featfreq(f s,t,w) as above,
and 2 additional feature values:

featdimfreq(f s,t, w) =
freq(f s,t|w)∑

ifreq(f i,t|w)
(4)

featdimfreq(f s,t, w) =
freq(f s,t|w)∑

j freq(f s,j |w)
(5)

which represent thefeatfreq values calculated along
each of the two feature dimensions. Additionally,
we calculate cumulative totals for each row and
column of the feature matrix and describe each as
for the one-dimensional features above (in the form
of 3 values). Thus, for anm × n-valued two-
dimensional feature cluster, we generate a total of
5mn + 3(m + n) independent feature values.

The feature clusters produce a combined total of
1284 individual feature values.

3.2 Agreement-based feature representation

The agreement-based feature representation con-
siders the degree of token agreement between the
features extracted using the three different pre-
processors. This allows us to pinpoint the reliable di-
agnostics within the corpus data and filter out noise
generated by the individual pre-processors.

It is possible to identify the features which
are positively-correlated with a unique countability
class (e.g. occurrence of a singular noun with the
determinera occurs only for countable nouns), and
for each to determine the token-level agreement be-
tween the different systems. The number of diagnos-
tics considered for each of the countability classes
is: 32 for countable nouns, 19 for uncountable nouns
and 1 for each of plural only and bipartite nouns.
The total number of diagnostics we test agreement
across is thus 53.

The token-level correlation for each featuref s is
calculated fourfold according to relative agreement,
the κ statistic, correlated frequency and correlated
weight. Therelative agreementbetween systems
sys andsys wrt f s for target nounw is defined to
be:

agr(f s,w)(sys, sys) =
|tok(f s,w)(sys) ∩ tok(f s,w)(sys)|
|tok(f s,w)(sys) ∪ tok(f s,w)(sys)|

where tok (f s,w)(sys i) returns the set of token in-
stances of(f s,w). Theκ statistic (Carletta, 1996)
is recast as:

κ(f s,w)(sys, sys) =
agr(f s,w)(sys, sys)−

∑
agr(f s,∗)(sys,sys)

N

−
∑

agr(f s,∗)(sys,sys)

N

In this modified form,κ(f s,w) represents the diver-
gence in relative agreement wrtf s for target nounw ,
relative to the mean relative agreement wrtf s over
all words.Correlated frequency is defined to be:

cfreq(f s,w)(sys, sys) =
|tok(f s,w)(sys) ∩ tok(f s,w)(sys)|

freq(w)



It describes the occurrence of tokens in agreement
for (f s,w) relative to the total occurrence of the tar-
get word.

The metrics are used to derive three separate fea-
ture values for each diagnostic over the three pre-
processor system pairings. We additionally calcu-
late the mean value of each metric across the system
pairings and the overallcorrelated weight for each
countability classC as:

cw(C ,w)(sys, sys) =

∑
f s∈C |tok(f s,w)(sys) ∩ tok(f s,w)(sys)|∑

i|tok(f i,w)(sys) ∩ tok(f i,w)(sys)|

Correlated weight describes the occurrence of corre-
lated features in the given countability class relative
to other correlated features.

We test agreement: (a) for each of these diag-
nostics individually and within each countability
class (Agree(Token,∗)), and (b) across the amalgam
of diagnostics for each of the countability classes
(Agree(Class,∗)). ForAgree(Token,∗), we calculate
agr , κ and cfreq values for each of the 53 diag-
nostics across the 3 system pairings, and addition-
ally calculate the mean value for each value. We
additionally calculate the overallcw value for each
countability class. This results in a total of 640 fea-
ture values (3× 53× 3 + 53× 3 + 4). In the case
of Agree(Class,∗), we average theagr , κ andcfreq
values across each countability class for each of the
three system pairings, and also calculate the mean
value in each case. We further calculate the overall
cw value for each countability class, culminating in
52 feature values (3× 4× 3 + 4× 3 + 4).

4 Classifier Set-up and Evaluation

Below, we outline the different classifiers tested
and describe the process used to generate the gold-
standard data.

4.1 Classifier architectures

We propose a variety of unsupervised and super-
vised classifier architectures for the task of learning
countability, and also a feature selection method. In
all cases, our classifiers are built using TiMBL ver-
sion 4.2 (Daelemans et al., 2002), a memory-based
classification system based on thek-nearest neigh-
bour algorithm. As a result of extensive parame-
ter optimisation, we settled on the default configu-
ration2 for TiMBL with k set to 9.3

2IB1 with weighted overlap, gain ratio-based feature
weighting and equal weighting of neighbours.

3We additionally experimented with the kernel-based
TinySVM system, but found TiMBL to be the marginally supe-
rior performer in all cases, a somewhat surprising result given
the high-dimensionality of the feature space.

Full-feature supervised classifiers
The simplest system architecture applies the su-

pervised learning paradigm to the distribution-based
feature vectors for each of the POS tagger, chun-
ker and RASP (Dist(POS,∗), Dist(chunk,∗) and
Dist(RASP,∗), respectively). For the distribution-
based feature representation, we additionally
combine the outputs of the three pre-processors by:
(a) concatenating the individual distribution-based
feature vectors for the three systems (resulting in
a 3852-element feature vector:Dist(AllCON,∗));
and (b) taking the mean over the three systems for
each distribution-based feature value (resulting in
a 1284-element feature vector:Dist(AllMEAN,∗)).
The agreement-based feature representation
provides two additional system configurations:
Agree(Class,∗) and Agree(Token,∗) (see Section
3.2).

Orthogonal to the issue of how to generate the
feature values is the question of how to classify
a given noun according to the different countabil-
ity classes. The two basic options here are to ei-
ther have a single classifier and define multiclasses
according to all observed combinations of count-
ability classes (Dist(∗,SINGLE )), or have a suite of
binary classifiers, one for each countability class
(Dist(∗,SUITE)). The SINGLE classifier architec-
ture has advantages in terms of speed (a 4× speed-
up over the classifier suite) and simplicity, but runs
into problems with data sparseness for the less-
commonly attested multi-classes given that a single
noun can occur with multiple countabilities. The
SUITE classifierarchitecture delineates the different
countability classes more directly, but runs the risk
of a noun not being classified according to any of the
four classes.

Feature-selecting supervised classifiers
We improve the performance of the basic classi-

fiers by way of best-N filter-based feature selection.
Feature selection has been shown to improve clas-
sification accuracy over a variety of tasks (Liu and
Motoda, 1988), but in the case of memory-based
learners such as TiMBL, has the additional advan-
tage of accelerating the classification process and re-
ducing memory overhead. The computational com-
plexity of memory-based learners is proportional to
the number of features, so any reduction in the fea-
ture space leads to a proportionate reduction in com-
putational time. For tasks such as countability clas-
sification with a large number of both feature values
and test instances (particularly if we are to classify
all noun types in a given corpus), this speed-up is
vital.



Our feature selection method uses a combined
feature relevance metric to estimate the best-N fea-
tures for each countability class, and then restricts
the classifier to operate over only thoseN features.
Feature relevance is estimated through analysis of
the correspondence between class and feature val-
ues for a given feature, through metrics including
shared variance and information gain. These indi-
vidual metrics tend to be biased toward particular
features: information gain and gain ratio, e.g., tend
to favour features of higher cardinality (White and
Liu, 1994). In order to minimise such bias, we
generate a feature ranking for each feature selec-
tion metric (based on the relative feature relevance
scores), and simply add the absolute ranks for each
feature together. By re-ranking the features in in-
creasing order of summed rank, we can generate a
generalised feature relevance ranking. We are now
in a position to prune the feature space to a pre-
determined size, by taking the best-N features in the
feature ranking.

The feature selection metrics we combine are
those implemented in TiMBL, namely: shared vari-
ance, chi-square, information gain and gain ratio.

Unsupervised classifier

In order to derive a common baseline for the dif-
ferent systems, we built an unsupervised classifier
which, for each target noun, simply checks to see
if any diagnostic (as used in the agreement-based
feature representation) was detected for each of the
countability classes; even a single occurrence of
a diagnostic is taken to be sufficient evidence for
membership in that countability class. Elementary
system combination is achieved by voting between
the three pre-processor outputs as to whether the tar-
get noun belongs to a given countability class. That
is, the target noun is classified as belonging to a
given countability class iff at least two of the pre-
processors furnish linguistic evidence for member-
ship in that class.

4.2 Training data

Training data was generated independently for the
SINGLE andSUITE classifiers. In each case, we first
extracted all countability-annotated nouns from each
of the ALT-J/E andCOMLEX lexicons which are at-
tested at least 10 times in the BNC, and composed
the training data from these pre-filtered sets. In the
case of theSINGLE classifier, we simply classified
words according to the union of all countabilities
from ALT-J/E andCOMLEX , resulting in the follow-
ing dataset:

Count Uncount Plural Bipart No. Freq
1 0 0 0 4068 .685
0 1 0 0 1134 .191
0 0 1 0 35 .006
0 0 0 1 10 .002
1 1 0 0 650 .110
1 0 1 0 13 .002
0 1 1 0 13 .002
0 0 1 1 5 .001
1 1 1 0 8 .001

From this, it is evident that some class combinations
(e.g.plural only+bipartite) are highly infrequent, hint-
ing at a problem with data sparseness.

For theSUITE classifier, we generate the positive
exemplars for the countable and uncountable classes
from the intersection of theCOMLEX and ALT-J/E
data for that class; negative exemplars, on the other
hand, are those not annotated as belonging to that
class in either lexicon. With the plural only and
bipartite data,COMLEX cannot be used as it does
not describe these two classes. We thus took all
members of each class listed inALT-J/E as our pos-
itive exemplars, and all remaining nouns with non-
identical singular and plural forms as negative ex-
emplars. This resulted in the following datasets:

Class Positive data Negative data
Countable 4,342 1,476
Uncountable 1,519 5,471
Plural only 84 5,639
Bipartite 35 5,639

5 Evaluation

Evaluation of the supervised classifiers was carried
out based on 10-fold stratified cross-validation over
the relevant dataset, and results presented here are
averaged over the 10 iterations. Classifier perfor-
mance is rated according to classification accuracy
(the proportion of instances classified correctly) and
F-score (β = 1). In the case of theSINGLE classifier,
the class-wise F-score is calculated by decomposing
the multiclass labels into their components. Acount-
able+uncountable instance misclassified ascountable,
for example, would count as a misclassification in
terms of classification accuracy, a correct classifica-
tion in the calculation of thecountable F-score, and a
misclassification in the calculation of theuncountable
F-score. Note that theSINGLE classifier is run over a
different dataset to each member of theSUITE clas-
sifier, and cross-comparison of the classification ac-
curacies is not representative of the relative system
performance (classification accuracies for theSIN-
GLE classifier are given in parentheses to reinforce
this point). Classification accuracies are thus simply
used for classifier comparison within a basic classi-
fier architecture (SINGLE or SUITE), and F-score is



Classifier Accuracy F-score
Majority class .746 .855
Unsupervised .798 .879
Dist(POS,SUITE) .928 .953
Dist(POS,SINGLE) (.850) .940
Dist(chunk,SUITE) .933 .956
Dist(chunk,SINGLE) (.853) .942
Dist(RASP,SUITE) .923 .950
Dist(RASP,SINGLE) (.847) .940
Dist(AllCON,SUITE) .939 .960
Dist(AllCON,SINGLE) (.857) .944
Dist(AllMEAN,SUITE) .937 .959
Agree(Token,SUITE) .902 .936
Agree(Class,SUITE) .911 .941

Table 1: Basic results for countable nouns

Classifier Accuracy F-score
Majority class .783 (.357)
Unsupervised .342 .391
Dist(POS,SUITE) .945 .876
Dist(POS,SINGLE) (.850) .861
Dist(chunk,SUITE) .945 .876
Dist(chunk,SINGLE) (.853) .861
Dist(RASP,SUITE) .944 .872
Dist(RASP,SINGLE) (.847) .851
Dist(AllCON,SUITE) .952 .892
Dist(AllCON,SINGLE) (.857) .873
Dist(AllMEAN,SUITE) .954 .895
Agree(Token,SUITE) .923 .825
Agree(Class,SUITE) .923 .824

Table 2: Basic results for uncountable nouns

the evaluation metric of choice for overall evalua-
tion.

We present the results for two baseline systems
for each countability class: a majority-class clas-
sifier and the unsupervised method. TheMajority
class system is run over the binary data used by
the SUITE classifier for the given class, and sim-
ply classifies all instances according to the most
commonly-attested class in that dataset. Irrespective
of the majority class, we calculate the F-score based
on a positive-class classifier, i.e. a classifier which
naively classifies each instance as belonging to the
given class; in the case that the positive class is not
the majority class, the F-score is given in parenthe-
ses.

The results for the different system configurations
over the four countability classes are presented in
Tables 1–4, in which the highest classification accu-
racy and F-score values for each class are presented
in boldface. The classifierDist(AllCON,SUITE), for
example, applies the distribution-based feature rep-
resentation in aSUITE classifier configuration (i.e.
it tests for binary membership in each countability
class), using the concatenated feature vectors from
each of the tagger, chunker and RASP.

Items of note in the results are:

Classifier Accuracy F-score
Majority class .985 (.023)
Unsupervised .411 .033
Dist(POS,SUITE) .989 .558
Dist(POS,SINGLE) (.850) .479
Dist(chunk,SUITE) .990 .568
Dist(chunk,SINGLE) (.853) .495
Dist(RASP,SUITE) .989 .415
Dist(RASP,SINGLE) (.847) .360
Dist(AllCON,SUITE) .990 .582
Dist(AllCON,SINGLE) (.857) .500
Dist(AllMEAN,SUITE) .990 .575
Agree(Token,SUITE) .988 .409
Agree(Class,SUITE) .988 .401

Table 3: Basic results for plural only nouns

Classifier Accuracy F-score
Majority class .994 (.012)
Unsupervised .931 .137
Dist(POS,SUITE) .997 .752
Dist(POS,SINGLE) (.850) .857
Dist(chunk,SUITE) .997 .704
Dist(chunk,SINGLE) (.853) .865
Dist(RASP,SUITE) .997 .700
Dist(RASP,SINGLE) (.847) .798
Dist(AllCON,SUITE) .996 .723
Dist(AllCON,SINGLE) (.857) .730
Dist(AllMEAN,SUITE) .997 .710
Agree(Token,SUITE) .997 .710
Agree(Class,SUITE) .997 .695

Table 4: Basic results for bipartite nouns

• all system configurations surpass both the
majority-class baseline and unsupervised clas-
sifier in terms of F-score

• for all other than bipartite nouns, theSUITE
classifier outperforms theSINGLE classifier in
terms of F-score

• the best of the distribution-based classifiers
was, without exception, superior to the best of
the agreement-based classifiers

• chunk-based feature extraction generally pro-
duced superior performance to POS tag-based
feature extraction, which was in turn gener-
ally better than RASP-based feature extraction;
statistically significant differences in F-score
(based on the two-tailedt-test,p < .05) were
observed for both chunking and tagging over
RASP for the plural only class, and chunking
over RASP for the countable class

• for the SUITE classifier, system combination
by either concatenation (Dist(AllCON,SUITE))
or averaging over the individual feature val-
ues (Dist(AllMEAN,SUITE)) generally led to a
statistically significant improvement over each
of the individual systems for the countable
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Figure 1: Effects of feature selection

and uncountable classes,4 but there was no
statistical difference between these two archi-
tectures for any of the 4 countability classes;
for the SINGLE classifier, system combination
(Dist(AllCON,SUITE)) did not lead to a signifi-
cant performance gain

To evaluate the effects of feature selection, we
graphed the F-score value and processing time (in
instances processed per second5) over values of
N from 25 to the full feature set. We targeted
theDist(AllCON,SUITE) system for evaluation (3852
features), and ran it over both the countable and un-
countable classes.6 We additionally carried out ran-
dom feature selection as a baseline to compare the
feature selection results against. Note that thex-axis
(N ) and righty-axis (instances/sec) are both log-
arithmic, such that the linear right-decreasing time
curves are indicative of the direct proportionality be-
tween the number of features and processing time.
The differential in F-score for the best-N configura-
tion as compared to the full feature set is statistically
insignificant forN > 100 for countable nouns and
N > 50 for uncountable nouns. That is, feature se-
lection facilitates a relative speed-up of around30×
without a significant drop in F-score. Comparing the
results for the best-N and rand-N features, the dif-
ference in F-score was statistically significant for all
values ofN < 1000. The proposed method of fea-
ture selection thus allows us to maintain the full clas-
sification potential of the feature set while enabling

4No significant performance difference was observed for:
Dist(ChunkMEAN,SUITE) vs. Dist(All∗,SUITE) for countable
nouns, andDist(POSCON,SUITE) vs. Dist(AllCON,SUITE) for
uncountable nouns.

5As evaluated on an AMD Athlon 2100+ CPU with 3GB of
memory.

6We focus exclusively on countable and uncountable nouns
here and in the remainder of supplementary evaluation as these
are by far the most populous countability classes.

Feature COUNTABLE UNCOUNTABLE
space Acc F-score Acc F-score

All features .937 .959 .954 .895
Best-200 .934 .956 .949 .884
Binary .904∗ .931∗ .930∗ .833∗

Corpus freq .929 .954 .952 .889
Word freq .933 .956 .954 .896
Feature freq .928 .952∗ .934∗ .869∗

Table 5: Results for restricted feature sets

a speedup greater than an order of magnitude, po-
tentially making the difference in practical utility for
the proposed method.

To determine the relative impact of the com-
ponent feature values on the performance of the
distribution-based feature representation, we used
theDist(AllMEAN,SUITE) configuration to build: (a)
a classifier using a single binary value for each
unit feature, based on simple corpus occurrence (Bi-
nary); and (b) 3 separate classifiers based on each of
thecorpfreq , wordfreq andfeatfreq features values
only (without the 2D feature cluster totals). In each
case, the total number of feature values is 206.

The results for each of these classifiers over
countable and uncountable nouns are pre-
sented in Table 5, as compared to the basic
Dist(AllMEAN,SUITE) classifier with all 1,284
features (All features) and also the best-200 features
(Best-200). Results which differ from those for
All featuresto a level of statistical significance are
asterisked. The binary classifiers performed signif-
icantly worse thanAll featuresfor both countable
and uncountable nouns, underlining the utility of the
distribution-based feature representation.wordfreq
is marginally superior tocorpfreq as a standalone
feature representation, and both of these were on
the whole slightly below the full feature set in
performance (although no significant difference was
observed).featfreq performed slightly worse again,
significantly below the level of the full feature set.
Results for the best-200 classifier were marginally
higher than those for each of the individual feature
representations in the case of the countable class,
but marginally below the results forcorpfreq and
wordfreq in the case of the uncountable class. The
differences here are not statistically significant, and
additional evaluation is required to determine the
relative success of feature selection over simply
usingwordfreq values, for example.

6 Discussion

There have been at least three earlier approaches
to the automatic determination of countability:
two using semantic cues and one using cor-



pora. Bond and Vatikiotis-Bateson (2002) deter-
mine a noun’s countability preferences—as de-
fined in a 5-way classification—from its se-
mantic class in theALT-J/E lexicon, and show
that semantics predicts countability 78% of the
time. O’Hara et al. (2003) implemented a sim-
ilar approach using the much larger Cyc on-
tology and achieved 89.5% accuracy, mapping
onto the 2 classes of countable and uncount-
able. Schwartz (2002) learned noun countabilities
by looking at determiner occurrence in singular
noun chunks and was able to tag 11.7% of BNC
noun tokens as countable and 39.5% as uncountable,
achieving a noun type agreement of 88% and 44%,
respectively, with theALT-J/E lexicon. Our results
compare favourably with each of these.

In a separate evaluation, we took the best-
performing classifier (Dist(AllCON,SUITE)) and ran
it over open data, using best-500 feature selection
(Baldwin and Bond, 2003). The output of the
classifier was evaluated relative to hand-annotated
data, and the level of agreement found to be around
92.4%, which is approximately equivalent to the
agreement betweenCOMLEX andALT-J/E of 93.8%.

In conclusion, we have presented a plethora of
learning techniques for deep lexical acquisition from
corpus data, and applied each to the task of classify-
ing English nouns for countability. We specifically
compared two feature representations, based on rel-
ative feature occurrence and token-level classifica-
tion, and two basic classifier architectures, using a
suite of binary classifiers and a single multi-class
classifier. We also analysed the effects of comb-
ing the output of multiple pre-processors, and pre-
sented a simple feature selection method. Overall,
the best results were obtained using a distribution-
based suite of binary classifiers combining the out-
put of multiple pre-processors.
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