Topics in Computational Linguistics — Grammar Engineering —

Dan Flickinger
CSLI Stanford & Saarland University
danf@csli.stanford.edu

Stephan Oepen
Universitetet i Oslo & CSLI Stanford
oe@csli.stanford.edu

http://lingo.stanford.edu/courses/05/ge/
LinGO Redwoods
— A Rich and Dynamic Treebank for HPSG —

Stephan Oepen, Daniel P. Flickinger, Kristina Toutanova, Christopher D. Manning
Center for the Study of Language and Information
Stanford University

oe@csli.stanford.edu
A Wake-Up Call to Our Community

Every time I fire a linguist, system performance goes up.

[Fred Jelinek, 1980s]
A Wake-Up Call to Our Community

Every time I fire a linguist, system performance goes up.

[Fred Jelinek, 1980s]

A Whole Generation of Traumatized Linguists

- Streams of fashion: analytical vs. empirical, linguistic vs. data-driven;
- (perceived) paradigm shift in the 1990s: discontinue ‘deep’ processing;
- Jelinek eventually turned off the lights — LFG & HPSG groups stable;
 → keep focus: ‘deep’ linguistic approaches required for long-term success.
Ambiguity Resolution Remains a (Major) Challenge

The Problem

- With broad-coverage grammars, even moderately complex sentences typically have multiple analyses (tens or hundreds, rarely thousands);
- unlike in grammar writing, exhaustive parsing is useless for applications;
- identifying the ‘right’ (i.e. intended) analysis is a very hard problem (AI);
- inclusion of (non-grammatical) sortal constraints is generally undesirable.

‘Current’ State of Affairs

- Heuristic scoring rules applied to (classes of) lexical items and rules;
- ‘optimality’ projection: accumulate quality marks and rank globally;
- beginning work on probabilistic models for on- or off-line parse selection.
Redwoods: Objectives and Basic Approach

Background — Motivation

- Facilitate research into stochastic disambiguation for HPSG (parsing);
- overcome limitations of existing resources (e.g. the PTB and alikes);
- define and train parse ranking model over broad-coverage grammar.

A Rich and Dynamic Treebank

- Grounded in existing broad-coverage grammar and parsing system;
- hand-disambiguate: record elementary discriminating decisions;
- provide syntactic and semantic information in variable formats;
- treebank evolution and (semi-)automatic updates with the grammar.
Deep Linguistic Processing with HPSG: DELPH-IN

Set-Up

- Loosely organized group of institutions and interested individuals;
- rooted in ‘linguistic’ NLP but geared towards practical applications;
- DELPH-IN resources in wide use: research, education, applications.

History

- Originally CSLI Stanford – Saarland University (VerbMobil, 1994);
- Tokyo University (Tsujii Laboratory): logic compilation techniques;
- Cambridge and Sussex Universities: efficient and accurate NLP;
- Trondheim and Oslo Universities, NTT: additional languages, MT.
An Open-Source Repository: Existing Resources

Common Reference Formalism
- Strongly typed, conjunctive, closed world typed feature structure logic;
- blend of [Carpenter, 1992], [Copestake, 1992], and [Krieger, 1995].

Engineering and Processing Environments
- LKB: grammar development environment (Lisp) [Copestake, 2002];
- PET: efficient, industry quality runtime engine (C[++]) [Callmeier, 2000];
- [incr tsdb()]: competence and performance profiler [Oepen, 2000].

Common Grammars on Multiple Platforms
- English (CSLI): English Resource Grammar; Dan Flickinger et al.
LinGO Redwoods: a Rich and Dynamic Treebank

- Tie treebank development to existing broad-coverage grammar;
- hand-select (or reject) intended analyses from parsed corpus;
- [Carter, 1997]: annotation by basic discriminating properties;
- record annotator decisions (and entailment) as first-class data;
- provide toolkits for dynamic mappings into various formats;
- semi-automatically update treebank as the grammar evolves;
- integrate treebank maintenance with grammar regression testing.
Annotation: Basic Discriminating Properties

- Extract minimal set of basic discriminants from set of HPSG analyses;
- typically easy to judge, need little expert knowledge about grammar;
- allow quick navigation through parse forest and incremental reduction;
- constituents use of particular construction over substring of input;
- lexical items use of particular lexical entry for input token;
- labeling assignment of particular abbreviatory label to a constituent;
- semantics appearance of particular key relation on constituent;
- Stanford undergraduate annotates some 2000 sentences per week.

- Regularly propagate discriminants into new version of parsed corpus;
Redwoods Representations: Native Encoding

Grammar Engineering (130)
Derived Encodings: Labeled Phrase Structure Trees

- reconstruct full HPSG analysis from derivation tree;
- match underspecified feature structure 'templates' against each node;
- optionally, collapse or suppress nodes.

```
SYNSEM.LOCAL.CAT

```

```
label

```

```
[HEAD verbal
VAL
SUBJ ⟨⟩
COMPS *olist*]

```

≡ ‘S’

Grammar Engineering (131)
Derived Encodings: Elementary Dependencies

- reconstruct full HPSG analysis, compute MRS meaning representation;
- extract basic predicate–argument structure with uninterpreted roles;
 → labeled dependency graph fragments of (primarily) lexical relations.

```plaintext
_4:
  _4:int_rel[SOA e2:_want2_rel]
e2:_want2_rel[ARG1 x4:pron_rel, ARG4 _2:hypo_rel]
_1:def_rel[BV x4:pron_rel]
_2:hypo_rel[SOA e18:_meet_v_rel]
e18:_meet_v_rel[ARG1 x4:pron_rel]
e19:_on_temp_rel[ARG e18:_meet_v_rel, ARG3 x21:dofw_rel]
x21:dofw_rel[NAMED :tue]
_3:def_np_rel[BV x21:dofw_rel]
}```
## Redwoods Development Status: 3rd Growth

<table>
<thead>
<tr>
<th></th>
<th>all parses</th>
<th>active = 0</th>
<th>active = 1</th>
<th>active &gt; 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM6</td>
<td>2706 7.7</td>
<td>216 9.4</td>
<td>2482 8.3</td>
<td>6 15.8</td>
</tr>
<tr>
<td>VM13</td>
<td>2279 8.5</td>
<td>248 10.8</td>
<td>2029 8.7</td>
<td>2 15.5</td>
</tr>
<tr>
<td>VM31</td>
<td>1967 6.2</td>
<td>216 10.1</td>
<td>1746 7.5</td>
<td>5 8.4</td>
</tr>
<tr>
<td>VM32</td>
<td>699 7.5</td>
<td>15 11.8</td>
<td>684 8.4</td>
<td>0 0.0</td>
</tr>
<tr>
<td>Total</td>
<td>7651 7.5</td>
<td>695 10.2</td>
<td>6941 8.2</td>
<td>13 12.9</td>
</tr>
</tbody>
</table>

- 5th Growth release planned October 2004: up to 16,000 sentences;
- inclusion of ‘fragment’ utterances for VerbMobil: extra ambiguity;
- addition of ecommerce customer email corpus: 6,000 utterances.
(Simplified) PCFG Estimation Example

乎于下表，语法工程（134）
Redwoods Applications: Parse Disambiguation

- Manning & Toutanova (Stanford): generative and conditional models;
- Baldridge & Osborne (Edinburgh): active learning and co-training;
- restrict to Redwoods subset of fully disambiguated ambiguous items;
- feature selection: phrase structure, morpho-syntax, dependencies;
- ten-fold cross validation: score against annotated gold standard;
- preliminary results: 80+% exact match parse selection accuracy;
- on-line use in parser: n-best beam search guided by MaxEnt scores;
- alternatively, full parse forest (polynomial) plus selective unpacking.
Conditional Parse Selection

- Local independence assumption is not true for unification grammars;
- PCFG unable to ‘learn’ from negative data, e.g. dis-preferred parses;
  → conditional model: given some context, sample properties of events.

Conditional Parse Selection

Given a sentence $s$ and a set of trees $\{t_1 \ldots t_n\}$ assigned to $s$ by some grammar, find the tree $t_i$ that maximizes $p(t_i|s)$. Assuming a set of features $\{f_1 \ldots f_m\}$ with corresponding weights $\{\lambda_1 \ldots \lambda_m\}$, the conditional probability for tree $t_i$ is given by:

$$p(t_i|s) = \frac{\exp \sum_j \lambda_j f_j(t_i)}{\sum_{k=1}^n \exp \sum_j \lambda_j f_j(t_k)} \quad (1)$$
Related Work

Non-Public Environments

- Related work at SRI Cambridge, (Xerox) PARC, and M$ Research;
- grammars, language corpora, and treebanks not publicly available;
- results published in some cases, generally difficult to reproduce.

Academic Environments

- [Dipper, 2000] LFG for German, ‘transfer’ into NeGra format;
- [Bouma et al., 2001] HPSG for Dutch, dependency structures only;
- emerging ‘HPSG’ treebanks for Bulgarian, Polish, maybe others;
- to our best knowledge, no existing rich and dynamic approach.
Conclusions — Background Material

- ‘Deep’ grammar-based processing requires adequate stochastic models;
- basic research needed on acquisition and application of stochastic models;
- no existing treebank resources with suitable granularity and flexibility;
- LinGO Redwoods treebank based on existing open-source technology;
- tied to broad-coverage HPSG grammar: advantages and disadvantages;
- rich in available information, dynamic in data extraction and evolution.

Grammar and Treebank available from: http://redwoods.stanford.edu/
Outlook: Redwoods for Everyone

Towards a common, open-source basis for stochastic HPSG
Based on Research and Contributions of

Tim Baldwin, John Beavers, Ezra Callahan, Emily M. Bender, Kathryn Campbell-Kibler, John Carroll, Ann Copestake, Rob Malouf, Ivan A. Sag, Stuart Shieber, Tom Wasow, and others.